Source code for netpyne.analysis.spikes_legacy

"""
Module for anaysis and plotting of spiking-related results

"""

try:
    basestring
except NameError:
    basestring = str

from netpyne import __gui__

if __gui__:
    import matplotlib.pyplot as plt
    from matplotlib import gridspec
    from matplotlib import mlab
import numpy as np
from numbers import Number
import pandas as pd
import scipy
from ..specs import Dict
from .utils import (
    colorList,
    exception,
    getCellsInclude,
    getSpktSpkid,
    _showFigure,
    _saveFigData,
    syncMeasure,
    _smooth1d,
)


# -------------------------------------------------------------------------------------------------------------------
## Calculate avg and peak rate of different subsets of cells for specific time period
# -------------------------------------------------------------------------------------------------------------------
[docs] @exception def calculateRate(include=['allCells', 'eachPop'], peakBin=5, timeRange=None): """ Function to calculate firing rate for selected cells Parameters ---------- include : list <Short description of include> **Default:** ``['allCells', 'eachPop']`` **Options:** ``<option>`` <description of option> peakBin : int <Short description of peakBin> **Default:** ``5`` **Options:** ``<option>`` <description of option> timeRange : <``None``?> <Short description of timeRange> **Default:** ``None`` **Options:** ``<option>`` <description of option> """ from .. import sim print('Calculating avg and peak firing rates ...') # Replace 'eachPop' with list of pops if 'eachPop' in include: include.remove('eachPop') for pop in sim.net.allPops: include.append(pop) # time range if timeRange is None: timeRange = [0, sim.cfg.duration] avg, peak, histData = [], [], [] # Plot separate line for each entry in include for iplot, subset in enumerate(include): cells, cellGids, netStimLabels = getCellsInclude([subset]) numNetStims = 0 # Select cells to include if len(cellGids) > 0: try: spkinds, spkts = list( zip( *[ (spkgid, spkt) for spkgid, spkt in zip(sim.allSimData['spkid'], sim.allSimData['spkt']) if spkgid in cellGids ] ) ) except: spkinds, spkts = [], [] else: spkinds, spkts = [], [] # Add NetStim spikes spkts, spkinds = list(spkts), list(spkinds) numNetStims = 0 if 'stims' in sim.allSimData: for netStimLabel in netStimLabels: netStimSpks = [ spk for cell, stims in sim.allSimData['stims'].items() for stimLabel, stimSpks in stims.items() for spk in stimSpks if stimLabel == netStimLabel ] if len(netStimSpks) > 0: lastInd = max(spkinds) if len(spkinds) > 0 else 0 spktsNew = netStimSpks spkindsNew = [lastInd + 1 + i for i in range(len(netStimSpks))] spkts.extend(spktsNew) spkinds.extend(spkindsNew) numNetStims += 1 if peakBin: histo = np.histogram(spkts, bins=np.arange(timeRange[0], timeRange[1], peakBin)) histoT = histo[1][:-1] + peakBin / 2 histoCount = histo[0] histData.append(histoCount) histoCount = ( histoCount * float((1000.0 / peakBin)) / float((len(cellGids) + numNetStims)) ) # convert to firing rate peak.append(float(max(histoCount))) spktsRange = [spkt for spkt in spkts if timeRange[0] <= spkt <= timeRange[1]] avg.append( float(len(spktsRange)) / float((len(cellGids) + numNetStims)) / float((timeRange[1] - timeRange[0])) * 1000.0 ) return include, avg, peak
# ------------------------------------------------------------------------------------------------------------------- ## Plot avg and peak rates at different time periods # -------------------------------------------------------------------------------------------------------------------
[docs] @exception def plotRates( include=['allCells', 'eachPop'], peakBin=5, timeRanges=None, timeRangeLabels=None, colors=None, figSize=((5, 5)), saveData=None, ylim=None, saveFig=None, showFig=True, ): """ Function for/to <short description of `netpyne.analysis.spikes.plotRates`> Parameters ---------- include : list <Short description of include> **Default:** ``['allCells', 'eachPop']`` **Options:** ``<option>`` <description of option> peakBin : int <Short description of peakBin> **Default:** ``5`` **Options:** ``<option>`` <description of option> timeRanges : <``None``?> <Short description of timeRanges> **Default:** ``None`` **Options:** ``<option>`` <description of option> timeRangeLabels : <``None``?> <Short description of timeRangeLabels> **Default:** ``None`` **Options:** ``<option>`` <description of option> colors : <``None``?> <Short description of colors> **Default:** ``None`` **Options:** ``<option>`` <description of option> figSize : tuple <Short description of figSize> **Default:** ``(5, 5)`` **Options:** ``<option>`` <description of option> saveData : <``None``?> <Short description of saveData> **Default:** ``None`` **Options:** ``<option>`` <description of option> ylim : <``None``?> <Short description of ylim> **Default:** ``None`` **Options:** ``<option>`` <description of option> saveFig : <``None``?> <Short description of saveFig> **Default:** ``None`` **Options:** ``<option>`` <description of option> showFig : bool <Short description of showFig> **Default:** ``True`` **Options:** ``<option>`` <description of option> """ from .. import sim if not colors: colors = colorList avgs = [] peaks = [] if not timeRangeLabels: timeRangeLabels = [ '%f-%f ms' % (t[0], t[1]) for t in timeRanges ] # ['period '+i for i in range(len(timeRanges))] for i, timeRange in enumerate(timeRanges): labels, avg, peak = sim.analysis.calculateRate(include=include, peakBin=peakBin, timeRange=timeRange) avgs.append(avg) peaks.append(peak) if showFig or saveFig: fig1, ax1 = plt.subplots(figsize=figSize) # avg fontsiz = 14 ax1.set_color_cycle(colors) ax1.plot(avgs, marker='o') # ax1.set_xlabel('Time period', fontsize=fontsiz) ax1.set_ylabel('Avg firing rate', fontsize=fontsiz) ax1.set_xticks(list(range(len(timeRangeLabels)))) ax1.set_xticklabels(timeRangeLabels, fontsize=fontsiz) ax1.set_xlim(-0.5, len(avgs) - 0.5) if ylim: ax1.set_ylim(ylim) ax1.legend(include) try: plt.tight_layout() except: pass # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'avgRates.png' plt.savefig(filename) # show fig if showFig: _showFigure() # peak fig2, ax2 = plt.subplots(figsize=figSize) ax2.set_color_cycle(colors) ax2.plot(peaks, marker='o') # ax2.set_xlabel('Time period', fontsize=fontsiz) ax2.set_ylabel('Peak firing rate', fontsize=fontsiz) ax2.set_xticks(list(range(len(timeRangeLabels)))) ax2.set_xticklabels(timeRangeLabels) ax2.set_xlim(-0.5, len(peaks) - 0.5) if ylim: ax2.set_ylim(ylim) ax2.legend(include) try: plt.tight_layout() except: pass # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'peakRates.png' plt.savefig(filename) # show fig if showFig: _showFigure() else: fig1, fig2 = None, None # save figure data if saveData: figData = {'includeList': includeList, 'timeRanges': timeRanges, 'avgs': avgs, 'peaks': peaks} _saveFigData(figData, saveData, 'raster') return fig1, fig2, avgs, peaks
# ------------------------------------------------------------------------------------------------------------------- ## Plot sync at different time periods # -------------------------------------------------------------------------------------------------------------------
[docs] @exception def plotSyncs( include=['allCells', 'eachPop'], timeRanges=None, timeRangeLabels=None, colors=None, figSize=((5, 5)), saveData=None, saveFig=None, showFig=True, ): """ Function for/to <short description of `netpyne.analysis.spikes.plotSyncs`> Parameters ---------- include : list <Short description of include> **Default:** ``['allCells', 'eachPop']`` **Options:** ``<option>`` <description of option> timeRanges : <``None``?> <Short description of timeRanges> **Default:** ``None`` **Options:** ``<option>`` <description of option> timeRangeLabels : <``None``?> <Short description of timeRangeLabels> **Default:** ``None`` **Options:** ``<option>`` <description of option> colors : <``None``?> <Short description of colors> **Default:** ``None`` **Options:** ``<option>`` <description of option> figSize : tuple <Short description of figSize> **Default:** ``(5, 5)`` **Options:** ``<option>`` <description of option> saveData : <``None``?> <Short description of saveData> **Default:** ``None`` **Options:** ``<option>`` <description of option> saveFig : <``None``?> <Short description of saveFig> **Default:** ``None`` **Options:** ``<option>`` <description of option> showFig : bool <Short description of showFig> **Default:** ``True`` **Options:** ``<option>`` <description of option> """ from .. import sim if not colors: colors = colorList syncs = [] if not timeRangeLabels: timeRangeLabels = [ '%f-%f ms' % (t[0], t[1]) for t in timeRanges ] # ['period '+i for i in range(len(timeRanges))] for i, timeRange in enumerate(timeRanges): print(timeRange) _, sync = sim.analysis.plotSpikeStats( include=include, timeRange=timeRange, stats=['sync'], saveFig=False, showFig=False ) print(sync) sync = [s[0] for s in sync] syncs.append(sync) fig1, ax1 = plt.subplots(figsize=figSize) # avg fontsiz = 14 ax1.set_color_cycle(colors) ax1.plot(syncs, marker='o') ax1.set_xlabel('Time period', fontsize=fontsiz) ax1.set_ylabel('Spiking synchrony', fontsize=fontsiz) ax1.set_xticks(list(range(len(timeRangeLabels)))) ax1.set_xticklabels(timeRangeLabels) ax1.set_xlim(-0.5, len(syncs) - 0.5) ax1.legend(include) # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'sync.png' plt.savefig(filename) # show fig if showFig: _showFigure() # save figure data if saveData: figData = {'includeList': includeList, 'timeRanges': timeRanges, 'syncs': syncs} _saveFigData(figData, saveData, 'raster') return fig1, syncs
# ------------------------------------------------------------------------------------------------------------------- ## Raster plot # -------------------------------------------------------------------------------------------------------------------
[docs] @exception def plotRaster( include=['allCells'], timeRange=None, maxSpikes=1e8, orderBy='gid', orderInverse=False, labels='legend', popRates=False, spikeHist=None, spikeHistBin=5, syncLines=False, lw=2, marker='|', markerSize=5, popColors={}, figSize=(10, 8), fontSize=12, dpi=100, saveData=None, saveFig=None, showFig=True, ): """ Function for/to <short description of `netpyne.analysis.spikes.plotRaster`> Parameters ---------- include : list Cells to include in the plot. **Default:** ``['allCells']`` plots all cells **Options:** ``['all']`` plots all cells and stimulations, ``['allNetStims']`` plots just stimulations, ``['popName1']`` plots a single population, ``['popName1', 'popName2']`` plots multiple populations, ``[120]`` plots a single cell, ``[120, 130]`` plots multiple cells, ``[('popName1', 56)]`` plots a cell from a specific population, ``[('popName1', [0, 1]), ('popName2', [4, 5, 6])]``, plots cells from multiple populations timeRange : list [start, stop] Time range to plot. **Default:** ``None`` plots entire time range **Options:** ``<option>`` <description of option> maxSpikes : int Maximum number of spikes to be plotted. **Default:** ``1e8`` **Options:** ``<option>`` <description of option> orderBy : str Unique numeric cell property by which to order the y-axis. **Default:** ``'gid'`` orders by cell ID **Options:** ``'y'`` orders by cell y-location, ``'ynorm'`` orders by cell normalized y-location orderInverse : bool Inverts the y-axis order if ``True``. **Default:** ``False`` **Options:** ``<option>`` <description of option> labels : str Show population labels in a legend or as an overlay on one side of raster. **Default:** ``'legend'`` **Options:** ``'overlay'`` popRates : bool Include population firing rates on plot if ``True``. **Default:** ``False`` **Options:** ``<option>`` <description of option> spikeHist : str Include spike histogram (spikes/bin) on plot. **Default:** ``None`` **Options:** ``'overlay'`` overlays the histogram directly on the raster plot ``'subplot'`` shows the histogram as a subplot to the raster plot spikeHistBin : int Size of bin in ms to use for spike histogram. **Default:** ``5`` **Options:** ``<option>`` <description of option> syncLines : bool Calculate synchrony measure and plot vertical lines for each spike to evidence synchrony if ``True``. **Default:** ``False`` **Options:** ``<option>`` <description of option> lw : int Line width for each spike. **Default:** ``2`` **Options:** ``<option>`` <description of option> marker : str Marker for each spike. **Default:** ``'|'`` **Options:** ``<option>`` <description of option> markerSize : int Size of marker for each spike. **Default:** ``5`` **Options:** ``<option>`` <description of option> popColors : dict Dictionary with custom color (value) used for each population (key). **Default:** ``None`` uses standard colors **Options:** ``<option>`` <description of option> figSize : list [width, height] Size of figure in inches. **Default:** ``(10, 8)`` **Options:** ``<option>`` <description of option> fontSize : int Font size on figure. **Default:** ``12`` **Options:** ``<option>`` <description of option> dpi : int Resolution of figure in dots per inch. **Default:** ``100`` **Options:** ``<option>`` <description of option> saveData : bool or str Whether and where to save the data used to generate the plot. **Default:** ``False`` **Options:** ``True`` autosaves the data, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.pkl'`` and ``'.json'`` saveFig : bool or str Whether and where to save the figure. **Default:** ``False`` **Options:** ``True`` autosaves the figure, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.png'``, ``'.jpg'``, ``'.eps'``, and ``'.tiff'`` showFig : bool Shows the figure if ``True``. **Default:** ``True`` **Options:** ``<option>`` <description of option> Returns ------- """ from .. import sim print('Plotting raster...') # Select cells to include cells, cellGids, netStimLabels = getCellsInclude(include) df = pd.DataFrame.from_records(cells) df = pd.concat([df.drop('tags', axis=1), pd.DataFrame.from_records(df['tags'].tolist())], axis=1) keep = ['pop', 'gid', 'conns'] if ( isinstance(orderBy, basestring) and orderBy not in cells[0]['tags'] ): # if orderBy property doesn't exist or is not numeric, use gid orderBy = 'gid' elif orderBy is 'pop': df['popInd'] = df['pop'].astype('category') df['popInd'].cat.set_categories(sim.net.pops.keys(), inplace=True) orderBy = 'popInd' elif isinstance(orderBy, basestring) and not isinstance(cells[0]['tags'][orderBy], Number): orderBy = 'gid' if isinstance(orderBy, list): if 'pop' in orderBy: df['popInd'] = df['pop'].astype('category') df['popInd'].cat.set_categories(sim.net.pops.keys(), inplace=True) orderBy[orderBy.index('pop')] = 'popInd' keep = keep + list(set(orderBy) - set(keep)) elif orderBy not in keep: keep.append(orderBy) df = df[keep] popLabels = [pop for pop in sim.net.allPops if pop in df['pop'].unique()] # preserves original ordering if netStimLabels: popLabels.append('NetStims') popColorsTmp = { popLabel: colorList[ipop % len(colorList)] for ipop, popLabel in enumerate(popLabels) } # dict with color for each pop if popColors: popColorsTmp.update(popColors) popColors = popColorsTmp if len(cellGids) > 0: gidColors = {cell['gid']: popColors[cell['tags']['pop']] for cell in cells} # dict with color for each gid try: sel, spkts, spkgids = getSpktSpkid( cellGids=[] if include == ['allCells'] else cellGids, timeRange=timeRange ) # using [] is faster for all cells except: import sys print((sys.exc_info())) spkgids, spkts = [], [] sel = pd.DataFrame(columns=['spkt', 'spkid']) sel['spkgidColor'] = sel['spkid'].map(gidColors) df['gidColor'] = df['pop'].map(popColors) df.set_index('gid', inplace=True) # Order by if len(df) > 0: ylabelText = 'Cells (ordered by %s)' % (orderBy) df = df.sort_values(by=orderBy) sel['spkind'] = sel['spkid'].apply(df.index.get_loc) else: sel = pd.DataFrame(columns=['spkt', 'spkid', 'spkind']) ylabelText = '' # Add NetStim spikes numCellSpks = len(sel) numNetStims = 0 for netStimLabel in netStimLabels: netStimSpks = [ spk for cell, stims in sim.allSimData['stims'].items() for stimLabel, stimSpks in stims.items() for spk in stimSpks if stimLabel == netStimLabel ] if len(netStimSpks) > 0: # lastInd = max(spkinds) if len(spkinds)>0 else 0 lastInd = sel['spkind'].max() if len(sel['spkind']) > 0 else 0 spktsNew = netStimSpks spkindsNew = [lastInd + 1 + i for i in range(len(netStimSpks))] ns = pd.DataFrame(list(zip(spktsNew, spkindsNew)), columns=['spkt', 'spkind']) ns['spkgidColor'] = popColors['netStims'] sel = pd.concat([sel, ns]) numNetStims += 1 else: pass # print netStimLabel+' produced no spikes' if len(cellGids) > 0 and numNetStims: ylabelText = ylabelText + ' and NetStims (at the end)' elif numNetStims: ylabelText = ylabelText + 'NetStims' if numCellSpks + numNetStims == 0: print('No spikes available to plot raster') return None # Time Range if timeRange == [0, sim.cfg.duration]: pass elif timeRange is None: timeRange = [0, sim.cfg.duration] else: sel = sel.query('spkt >= @timeRange[0] and spkt <= @timeRange[1]') # Limit to maxSpikes if len(sel) > maxSpikes: print((' Showing only the first %i out of %i spikes' % (maxSpikes, len(sel)))) # Limit num of spikes if numNetStims: # sort first if have netStims sel = sel.sort_values(by='spkt') sel = sel.iloc[:maxSpikes] timeRange[1] = sel['spkt'].max() # Calculate spike histogram if spikeHist: histo = np.histogram(sel['spkt'].tolist(), bins=np.arange(timeRange[0], timeRange[1], spikeHistBin)) histoT = histo[1][:-1] + spikeHistBin / 2 histoCount = histo[0] # Plot spikes # set font size plt.rcParams.update({'font.size': fontSize}) fig, ax1 = plt.subplots(figsize=figSize) fontsiz = fontSize if spikeHist == 'subplot': gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) ax1 = plt.subplot(gs[0]) sel['spkt'] = sel['spkt'].apply(pd.to_numeric) sel.plot.scatter( ax=ax1, x='spkt', y='spkind', lw=lw, s=markerSize, marker=marker, c=sel['spkgidColor'].tolist() ) # Create raster ax1.set_xlim(timeRange) # Plot stats gidPops = df['pop'].tolist() popNumCells = [float(gidPops.count(pop)) for pop in popLabels] if numCellSpks else [0] * len(popLabels) totalSpikes = len(sel) totalConnections = sum([len(conns) for conns in df['conns']]) numCells = len(cells) firingRate = ( float(totalSpikes) / (numCells + numNetStims) / (timeRange[1] - timeRange[0]) * 1e3 if totalSpikes > 0 else 0 ) # Calculate firing rate connsPerCell = ( totalConnections / float(numCells) if numCells > 0 else 0 ) # Calculate the number of connections per cell if popRates: avgRates = {} tsecs = (timeRange[1] - timeRange[0]) / 1e3 for i, (pop, popNum) in enumerate(zip(popLabels, popNumCells)): if numCells > 0 and pop != 'NetStims': if numCellSpks == 0: avgRates[pop] = 0 else: avgRates[pop] = ( len( [ spkid for spkid in sel['spkind'].iloc[: numCellSpks - 1] if df['pop'].iloc[int(spkid)] == pop ] ) / popNum / tsecs ) if numNetStims: popNumCells[-1] = numNetStims avgRates['NetStims'] = len([spkid for spkid in sel['spkind'].iloc[numCellSpks:]]) / numNetStims / tsecs # Plot synchrony lines if syncLines: for spkt in sel['spkt'].tolist(): ax1.plot((spkt, spkt), (0, len(cells) + numNetStims), 'r-', linewidth=0.1) plt.title( 'cells=%i syns/cell=%0.1f rate=%0.1f Hz sync=%0.2f' % (numCells, connsPerCell, firingRate, syncMeasure()), fontsize=fontsiz, ) else: plt.title( 'cells=%i syns/cell=%0.1f rate=%0.1f Hz' % (numCells, connsPerCell, firingRate), fontsize=fontsiz ) # Axis ax1.set_xlabel('Time (ms)', fontsize=fontsiz) ax1.set_ylabel(ylabelText, fontsize=fontsiz) ax1.set_xlim(timeRange) ax1.set_ylim(-1, len(cells) + numNetStims + 1) # Add legend if popRates: popLabelRates = [ popLabel + ' (%.3g Hz)' % (avgRates[popLabel]) for popLabel in popLabels if popLabel in avgRates ] if labels == 'legend': for ipop, popLabel in enumerate(popLabels): label = popLabelRates[ipop] if popRates else popLabel plt.plot(0, 0, color=popColors[popLabel], label=label) plt.legend(fontsize=fontsiz, bbox_to_anchor=(1.04, 1), loc=2, borderaxespad=0.0) maxLabelLen = max([len(l) for l in popLabels]) rightOffset = 0.85 if popRates else 0.9 plt.subplots_adjust(right=(rightOffset - 0.012 * maxLabelLen)) elif labels == 'overlay': ax = plt.gca() tx = 1.01 margin = 1.0 / numCells / 2 minSpacing = float(fontsiz) * 1.1 / float((0.8 * figSize[1] * dpi)) tys = [(float(popLen) / numCells) * (1 - 2 * margin) for popLen in popNumCells] tysOffset = list(scipy.cumsum(tys))[:-1] if len(tysOffset): tysOffset = [tysOffset[0]] + [ tysOffset[i] + max(tysOffset[i + 1] - tysOffset[i], minSpacing) for i in range(len(tysOffset) - 1) ] tysOffset.insert(0, 0) labels = popLabelRates if popRates else popLabels for ipop, (ty, tyOffset, popLabel) in enumerate(zip(tys, tysOffset, popLabels)): label = popLabelRates[ipop] if popRates else popLabel if orderInverse: finalty = 1.0 - (tyOffset + ty / 2.0 + 0.01) else: finalty = tyOffset + ty / 2.0 - 0.01 plt.text(tx, finalty, label, transform=ax.transAxes, fontsize=fontsiz, color=popColors[popLabel]) maxLabelLen = min(6, max([len(l) for l in labels])) plt.subplots_adjust(right=(0.95 - 0.011 * maxLabelLen)) # Plot spike hist if spikeHist == 'overlay': ax2 = ax1.twinx() ax2.plot(histoT, histoCount, linewidth=0.5) ax2.set_ylabel('Spike count', fontsize=fontsiz) # add yaxis label in opposite side ax2.set_xlim(timeRange) elif spikeHist == 'subplot': ax2 = plt.subplot(gs[1]) ax2.plot(histoT, histoCount, linewidth=1.0) ax2.set_xlabel('Time (ms)', fontsize=fontsiz) ax2.set_ylabel('Spike count', fontsize=fontsiz) ax2.set_xlim(timeRange) if orderInverse: plt.gca().invert_yaxis() # save figure data if saveData: figData = { 'spkTimes': sel['spkt'].tolist(), 'spkInds': sel['spkind'].tolist(), 'spkColors': sel['spkgidColor'].tolist(), 'cellGids': cellGids, 'sortedGids': df.index.tolist(), 'numNetStims': numNetStims, 'include': include, 'timeRange': timeRange, 'maxSpikes': maxSpikes, 'orderBy': orderBy, 'orderInverse': orderInverse, 'spikeHist': spikeHist, 'syncLines': syncLines, } _saveFigData(figData, saveData, 'raster') # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_raster_' + str(orderBy) + '.png' plt.savefig(filename, dpi=dpi) # show fig if showFig: _showFigure() return fig, {'include': include, 'spkts': spkts, 'spkinds': sel['spkind'].tolist(), 'timeRange': timeRange}
# ------------------------------------------------------------------------------------------------------------------- ## Plot spike histogram # -------------------------------------------------------------------------------------------------------------------
[docs] @exception def plotSpikeHist( include=['eachPop', 'allCells'], timeRange=None, binSize=5, overlay=True, graphType='line', measure='rate', norm=False, smooth=None, filtFreq=None, filtOrder=3, axis=True, popColors=None, figSize=(10, 8), dpi=100, saveData=None, saveFig=None, showFig=True, **kwargs ): """ Function for/to <short description of `netpyne.analysis.spikes.plotSpikeHist`> Parameters ---------- include : list Populations and cells to include in the plot. **Default:** ``['eachPop', 'allCells']`` plots histogram for each population and overall average **Options:** ``['all']`` plots all cells and stimulations, ``['allNetStims']`` plots just stimulations, ``['popName1']`` plots a single population, ``['popName1', 'popName2']`` plots multiple populations, ``[120]`` plots a single cell, ``[120, 130]`` plots multiple cells, ``[('popName1', 56)]`` plots a cell from a specific population, ``[('popName1', [0, 1]), ('popName2', [4, 5, 6])]``, plots cells from multiple populations timeRange : list [start, stop] Time range to plot. **Default:** ``None`` plots entire time range **Options:** ``<option>`` <description of option> binSize : int Size of bin in ms to use for spike histogram. **Default:** ``5`` **Options:** ``<option>`` <description of option> overlay : bool Plots each group on a separate axis if ``False``. **Default:** ``True`` plots each group on one axis **Options:** ``<option>`` <description of option> graphType : str Show histograms as line graphs or bar plots. **Default:** ``'line'`` **Options:** ``'bar'`` measure : str Whether to plot spike freguency (rate) or spike count. **Default:** ``'rate'`` **Options:** ``'count'`` norm : bool Whether to normalize the data or not. **Default:** ``False`` does not normalize the data **Options:** ``<option>`` <description of option> smooth : int Window width for smoothing. **Default:** ``None`` does not smooth the data **Options:** ``<option>`` <description of option> filtFreq : int or list Frequency for low-pass filter (int) or frequencies for bandpass filter in a list: [low, high] **Default:** ``None`` does not filter the data **Options:** ``<option>`` <description of option> filtOrder : int Order of the filter defined by `filtFreq`. **Default:** ``3`` **Options:** ``<option>`` <description of option> axis : bool Whether to include a labeled axis on the figure. **Default:** ``True`` includes a labeled axis **Options:** ``False`` includes a scale bar popColors : dict Dictionary with custom color (value) used for each population (key). **Default:** ``None`` uses standard colors **Options:** ``<option>`` <description of option> figSize : list [width, height] Size of figure in inches. **Default:** ``(10, 8)`` **Options:** ``<option>`` <description of option> dpi : int Resolution of figure in dots per inch. **Default:** ``100`` **Options:** ``<option>`` <description of option> saveData : bool or str Whether and where to save the data used to generate the plot. **Default:** ``False`` **Options:** ``True`` autosaves the data, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.pkl'`` and ``'.json'`` saveFig : bool or str Whether and where to save the figure. **Default:** ``False`` **Options:** ``True`` autosaves the figure, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.png'``, ``'.jpg'``, ``'.eps'``, and ``'.tiff'`` showFig : bool Shows the figure if ``True``. **Default:** ``True`` **Options:** ``<option>`` <description of option> kwargs : <type> <Short description of kwargs> **Default:** *required* Returns ------- """ from .. import sim from ..support.scalebar import add_scalebar print('Plotting spike histogram...') # Replace 'eachPop' with list of pops if 'eachPop' in include: include.remove('eachPop') for pop in sim.net.allPops: include.append(pop) # Measure if measure == 'rate': if norm: yaxisLabel = 'Normalized firing rate' else: yaxisLabel = 'Avg cell firing rate (Hz)' elif measure == 'count': if norm: yaxisLabel = 'Normalized spike count' else: yaxisLabel = 'Spike count' else: print('Invalid measure: %s', (measure)) return # time range if timeRange is None: timeRange = [0, sim.cfg.duration] histoData = [] # create fig fig, ax1 = plt.subplots(figsize=figSize) fontsiz = 12 # Plot separate line for each entry in include for iplot, subset in enumerate(include): if isinstance(subset, list): cells, cellGids, netStimLabels = getCellsInclude(subset) else: cells, cellGids, netStimLabels = getCellsInclude([subset]) numNetStims = 0 # Select cells to include if len(cellGids) > 0: try: spkinds, spkts = list( zip( *[ (spkgid, spkt) for spkgid, spkt in zip(sim.allSimData['spkid'], sim.allSimData['spkt']) if spkgid in cellGids ] ) ) except: spkinds, spkts = [], [] else: spkinds, spkts = [], [] # Add NetStim spikes spkts, spkinds = list(spkts), list(spkinds) numNetStims = 0 if 'stims' in sim.allSimData: for netStimLabel in netStimLabels: netStimSpks = [ spk for cell, stims in sim.allSimData['stims'].items() for stimLabel, stimSpks in stims.items() for spk in stimSpks if stimLabel == netStimLabel ] if len(netStimSpks) > 0: lastInd = max(spkinds) if len(spkinds) > 0 else 0 spktsNew = netStimSpks spkindsNew = [lastInd + 1 + i for i in range(len(netStimSpks))] spkts.extend(spktsNew) spkinds.extend(spkindsNew) numNetStims += 1 histo = np.histogram(spkts, bins=np.arange(timeRange[0], timeRange[1], binSize)) histoT = histo[1][:-1] + binSize / 2 histoCount = histo[0] if measure == 'rate': histoCount = histoCount * (1000.0 / binSize) / (len(cellGids) + numNetStims) # convert to firing rate if filtFreq: from scipy import signal fs = 1000.0 / binSize nyquist = fs / 2.0 if isinstance(filtFreq, list): # bandpass Wn = [filtFreq[0] / nyquist, filtFreq[1] / nyquist] b, a = signal.butter(filtOrder, Wn, btype='bandpass') elif isinstance(filtFreq, Number): # lowpass Wn = filtFreq / nyquist b, a = signal.butter(filtOrder, Wn) histoCount = signal.filtfilt(b, a, histoCount) if norm: histoCount /= max(histoCount) if smooth: histoCount = _smooth1d(histoCount, smooth)[: len(histoT)] histoData.append(histoCount) if isinstance(subset, list): color = colorList[iplot % len(colorList)] else: if popColors: color = popColors[subset] if subset in popColors else colorList[iplot % len(colorList)] else: color = colorList[iplot % len(colorList)] if not overlay: plt.subplot(len(include), 1, iplot + 1) # if subplot, create new subplot plt.title(str(subset), fontsize=fontsiz) color = 'blue' if 'linewidth' in kwargs: lw = kwargs['linewidth'] else: lw = 1.0 if graphType == 'line': plt.plot(histoT, histoCount, linewidth=lw, color=color) elif graphType == 'bar': # plt.bar(histoT, histoCount, width = binSize, color = color, fill=False) plt.step(histoT, histoCount, linewidth=lw, color=color) # , ls='steps') if iplot == 0: plt.xlabel('Time (ms)', fontsize=fontsiz) plt.ylabel(yaxisLabel, fontsize=fontsiz) # add yaxis in opposite side plt.xlim(timeRange) if len(include) < 5: # if apply tight_layout with many subplots it inverts the y-axis try: plt.tight_layout() except: pass # Add legend if overlay: for i, subset in enumerate(include): if not isinstance(subset, list): color = colorList[i % len(colorList)] else: if popColors: color = popColors[subset] if subset in popColors else colorList[i % len(colorList)] else: color = colorList[i % len(colorList)] plt.plot(0, 0, color=color, label=str(subset)) plt.legend(fontsize=fontsiz, bbox_to_anchor=(1.04, 1), loc=2, borderaxespad=0.0) maxLabelLen = min(10, max([len(str(l)) for l in include])) plt.subplots_adjust(right=(0.9 - 0.012 * maxLabelLen)) # Set axis or scaleber if not axis: ax = plt.gca() scalebarLoc = kwargs.get('scalebarLoc', 7) round_to_n = lambda x, n, m: int(np.round(round(x, -int(np.floor(np.log10(abs(x)))) + (n - 1)) / m)) * m sizex = round_to_n((timeRange[1] - timeRange[0]) / 10.0, 1, 50) add_scalebar( ax, hidex=False, hidey=True, matchx=False, matchy=True, sizex=sizex, sizey=None, unitsx='ms', unitsy='Hz', scalex=1, scaley=1, loc=scalebarLoc, pad=2, borderpad=0.5, sep=4, prop=None, barcolor="black", barwidth=3, ) plt.axis(axis) # save figure data if saveData: figData = { 'histoData': histoData, 'histoT': histoT, 'include': include, 'timeRange': timeRange, 'binSize': binSize, 'saveData': saveData, 'saveFig': saveFig, 'showFig': showFig, } _saveFigData(figData, saveData, 'spikeHist') # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_plot_spikeHist.png' plt.savefig(filename, dpi=dpi) # show fig if showFig: _showFigure() return fig, {'include': include, 'histoData': histoData, 'histoT': histoT, 'timeRange': timeRange}
# ------------------------------------------------------------------------------------------------------------------- ## Plot spike statistics # -------------------------------------------------------------------------------------------------------------------
[docs] @exception def plotSpikeStats( include=['eachPop', 'allCells'], statDataIn={}, timeRange=None, graphType='boxplot', stats=['rate', 'isicv'], bins=50, histlogy=False, histlogx=False, histmin=0.0, density=False, includeRate0=False, legendLabels=None, normfit=False, histShading=True, xlim=None, popColors={}, figSize=(6, 8), fontSize=12, dpi=100, saveData=None, saveFig=None, showFig=True, **kwargs ): """ Function for/to <short description of `netpyne.analysis.spikes.plotSpikeStats`> Parameters ---------- include : list Populations and cells to include in the plot. **Default:** ``['eachPop', 'allCells']`` plots histogram for each population and overall average **Options:** ``['all']`` plots all cells and stimulations, ``['allNetStims']`` plots just stimulations, ``['popName1']`` plots a single population, ``['popName1', 'popName2']`` plots multiple populations, ``[120]`` plots a single cell, ``[120, 130]`` plots multiple cells, ``[('popName1', 56)]`` plots a cell from a specific population, ``[('popName1', [0, 1]), ('popName2', [4, 5, 6])]``, plots cells from multiple populations statDataIn : dict A pre-computed dictionary of stats data to import. **Default:** ``{}`` **Options:** ``<option>`` <description of option> timeRange : list [start, stop] Time range to plot. **Default:** ``None`` plots entire time range **Options:** ``<option>`` <description of option> graphType : str Whether to plot stats using boxplots or histograms. **Default:** ``'boxplot'`` **Options:** ``'histogram'`` stats : list Statistics to plot. **Default:** ``['rate', 'isicv']`` **Options:** ``['rate', 'isicv', 'sync', 'pairsync']`` bins : int or list Number of bins (if int) or edges (if list) for histogram **Default:** ``50`` **Options:** ``<option>`` <description of option> histlogy : bool <Short description of histlogy> **Default:** ``False`` **Options:** ``<option>`` <description of option> histlogx : bool Whether to make the x axis logarithmic **Default:** ``False`` **Options:** ``<option>`` <description of option> histmin : float The minimumum value to include in analyses. **Default:** ``0.0`` **Options:** ``<option>`` <description of option> density : bool If ``True``, weights values by density **Default:** ``False`` **Options:** ``<option>`` <description of option> includeRate0 : bool Needs documentation. **Default:** ``False`` **Options:** ``<option>`` <description of option> legendLabels : list? Needs documentation. **Default:** ``None`` **Options:** ``<option>`` <description of option> normfit : bool Needs documentation. **Default:** ``False`` **Options:** ``<option>`` <description of option> histShading : bool Needs documentation. **Default:** ``True`` **Options:** ``<option>`` <description of option> xlim : list [min, max] Sets the x limits of the plot. **Default:** ``None`` **Options:** ``<option>`` <description of option> popColors : dict Dictionary with custom color (value) used for each population (key). **Default:** ``{}`` uses standard colors **Options:** ``<option>`` <description of option> figSize : list [width, height] Size of figure in inches. **Default:** ``(10, 8)`` **Options:** ``<option>`` <description of option> fontSize : int Font size on figure. **Default:** ``12`` **Options:** ``<option>`` <description of option> dpi : int Resolution of figure in dots per inch. **Default:** ``100`` **Options:** ``<option>`` <description of option> saveData : bool or str Whether and where to save the data used to generate the plot. **Default:** ``False`` **Options:** ``True`` autosaves the data, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.pkl'`` and ``'.json'`` saveFig : bool or str Whether and where to save the figure. **Default:** ``False`` **Options:** ``True`` autosaves the figure, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.png'``, ``'.jpg'``, ``'.eps'``, and ``'.tiff'`` showFig : bool Shows the figure if ``True``. **Default:** ``True`` **Options:** ``<option>`` <description of option> kwargs : <type> <Short description of kwargs> **Default:** *required* Returns ------- """ from .. import sim print('Plotting spike stats...') # Set plot style colors = [] params = { 'axes.labelsize': fontSize, 'font.size': fontSize, 'legend.fontsize': fontSize, 'xtick.labelsize': fontSize, 'ytick.labelsize': fontSize, 'text.usetex': False, } plt.rcParams.update(params) xlabels = { 'rate': 'Rate (Hz)', 'isicv': 'Irregularity (ISI CV)', 'sync': 'Synchrony', 'pairsync': 'Pairwise synchrony', } # Replace 'eachPop' with list of pops if 'eachPop' in include: include.remove('eachPop') for pop in sim.net.allPops: include.append(pop) # time range if timeRange is None: timeRange = [0, sim.cfg.duration] for stat in stats: # create fig fig, ax1 = plt.subplots(figsize=figSize) fontsiz = fontSize xlabel = xlabels[stat] statData = [] gidsData = [] ynormsData = [] # Calculate data for each entry in include for iplot, subset in enumerate(include): if stat in statDataIn: statData = statDataIn[stat]['statData'] gidsData = statDataIn[stat].get('gidsData', []) ynormsData = statDataIn[stat].get('ynormsData', []) else: cells, cellGids, netStimLabels = getCellsInclude([subset]) numNetStims = 0 # Select cells to include if len(cellGids) > 0: try: spkinds, spkts = list( zip( *[ (spkgid, spkt) for spkgid, spkt in zip(sim.allSimData['spkid'], sim.allSimData['spkt']) if spkgid in cellGids ] ) ) except: spkinds, spkts = [], [] else: spkinds, spkts = [], [] # Add NetStim spikes spkts, spkinds = list(spkts), list(spkinds) numNetStims = 0 if 'stims' in sim.allSimData: for netStimLabel in netStimLabels: netStimSpks = [ spk for cell, stims in sim.allSimData['stims'].items() for stimLabel, stimSpks in stims.items() for spk in stimSpks if stimLabel == netStimLabel ] if len(netStimSpks) > 0: lastInd = max(spkinds) if len(spkinds) > 0 else 0 spktsNew = netStimSpks spkindsNew = [lastInd + 1 + i for i in range(len(netStimSpks))] spkts.extend(spktsNew) spkinds.extend(spkindsNew) numNetStims += 1 try: spkts, spkinds = list( zip( *[ (spkt, spkind) for spkt, spkind in zip(spkts, spkinds) if timeRange[0] <= spkt <= timeRange[1] ] ) ) except: pass # if scatter get gids and ynorm if graphType == 'scatter': if includeRate0: gids = cellGids else: gids = set(spkinds) ynorms = [sim.net.allCells[int(gid)]['tags']['ynorm'] for gid in gids] gidsData.insert(0, gids) ynormsData.insert(0, ynorms) # rate stats if stat == 'rate': toRate = 1e3 / (timeRange[1] - timeRange[0]) if includeRate0: rates = ( [spkinds.count(gid) * toRate for gid in cellGids] if len(spkinds) > 0 else [0] * len(cellGids) ) # cellGids] #set(spkinds)] else: rates = ( [spkinds.count(gid) * toRate for gid in set(spkinds)] if len(spkinds) > 0 else [0] ) # cellGids] #set(spkinds)] statData.append(rates) # Inter-spike interval (ISI) coefficient of variation (CV) stats elif stat == 'isicv': import numpy as np spkmat = [[spkt for spkind, spkt in zip(spkinds, spkts) if spkind == gid] for gid in set(spkinds)] isimat = [[t - s for s, t in zip(spks, spks[1:])] for spks in spkmat if len(spks) > 10] isicv = [np.std(x) / np.mean(x) if len(x) > 0 else 0 for x in isimat] # if len(x)>0] statData.append(isicv) # synchrony elif stat in ['sync', 'pairsync']: try: import pyspike import numpy as np except: print( "Error: plotSpikeStats() requires the PySpike python package \ to calculate synchrony (try: pip install pyspike)" ) return 0 spkmat = [ pyspike.SpikeTrain([spkt for spkind, spkt in zip(spkinds, spkts) if spkind == gid], timeRange) for gid in set(spkinds) ] if stat == 'sync': # (SPIKE-Sync measure)' # see http://www.scholarpedia.org/article/Measures_of_spike_train_synchrony syncMat = [pyspike.spike_sync(spkmat)] # graphType = 'bar' elif stat == 'pairsync': # (SPIKE-Sync measure)' # see http://www.scholarpedia.org/article/Measures_of_spike_train_synchrony syncMat = np.mean(pyspike.spike_sync_matrix(spkmat), 0) statData.append(syncMat) colors.append( popColors[subset] if subset in popColors else colorList[iplot % len(colorList)] ) # colors in inverse order # if 'allCells' included make it black if include[0] == 'allCells': # if graphType == 'boxplot': del colors[0] colors.insert(0, (0.5, 0.5, 0.5)) # # colors.insert(len(include), (0.5,0.5,0.5)) # # boxplot if graphType == 'boxplot': meanpointprops = dict(marker=(5, 1, 0), markeredgecolor='black', markerfacecolor='white') labels = legendLabels if legendLabels else include bp = plt.boxplot( statData[::-1], labels=labels[::-1], notch=False, sym='k+', meanprops=meanpointprops, whis=1.5, widths=0.6, vert=False, showmeans=True, patch_artist=True, ) # labels[::-1] plt.xlabel(xlabel, fontsize=fontsiz) plt.ylabel('Population', fontsize=fontsiz) icolor = 0 borderColor = 'k' for i in range(0, len(bp['boxes'])): icolor = i bp['boxes'][i].set_facecolor(colors[::-1][icolor]) bp['boxes'][i].set_linewidth(2) # we have two whiskers! bp['whiskers'][i * 2].set_color(borderColor) bp['whiskers'][i * 2 + 1].set_color(borderColor) bp['whiskers'][i * 2].set_linewidth(2) bp['whiskers'][i * 2 + 1].set_linewidth(2) bp['medians'][i].set_color(borderColor) bp['medians'][i].set_linewidth(3) # for f in bp['fliers']: # f.set_color(colors[icolor]) # print f # and 4 caps to remove for c in bp['caps']: c.set_color(borderColor) c.set_linewidth(2) ax = plt.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.tick_params(axis='x', length=0) ax.tick_params(axis='y', direction='out') ax.grid(axis='x', color="0.9", linestyle='-', linewidth=1) ax.set_axisbelow(True) if xlim: ax.set_xlim(xlim) # histogram elif graphType == 'histogram': import numpy as np nmax = 0 pdfmax = 0 binmax = 0 for i, data in enumerate(statData): # fix if histlogx: histbins = np.logspace(np.log10(histmin), np.log10(max(data)), bins) else: histbins = bins if histmin: # min value data = np.array(data) data = data[data > histmin] if density: weights = np.ones_like(data) / float(len(data)) else: weights = np.ones_like(data) n, binedges, _ = plt.hist( data, bins=histbins, histtype='step', color=colors[i], linewidth=2, weights=weights ) # , normed=1)#, normed=density)# weights=weights) if histShading: plt.hist(data, bins=histbins, alpha=0.05, color=colors[i], linewidth=0, weights=weights) label = legendLabels[-i - 1] if legendLabels else str(include[-i - 1]) if histShading: plt.hist( [-10], bins=histbins, fc=((colors[i][0], colors[i][1], colors[i][2], 0.05)), edgecolor=colors[i], linewidth=2, label=label, ) else: plt.hist([-10], bins=histbins, fc=((1, 1, 1), 0), edgecolor=colors[i], linewidth=2, label=label) nmax = max(nmax, max(n)) binmax = max(binmax, binedges[-1]) if histlogx: plt.xscale('log') if normfit: def lognorm(meaninput, stdinput, binedges, n, popLabel, color): from scipy import stats M = float(meaninput) # Geometric mean == median s = float(stdinput) # Geometric standard deviation mu = np.log10(M) # Mean of log(X) sigma = np.log10(s) # Standard deviation of log(X) shape = sigma # Scipy's shape parameter scale = np.power(10, mu) # Scipy's scale parameter x = [ (binedges[i] + binedges[i + 1]) / 2.0 for i in range(len(binedges) - 1) ] # np.linspace(histmin, 30, num=400) # values for x-axis pdf = stats.lognorm.pdf(x, shape, loc=0, scale=scale) # probability distribution R, p = scipy.stats.pearsonr(n, pdf) print( ' Pop %s rate: mean=%f, std=%f, lognorm mu=%f, lognorm sigma=%f, R=%.2f (p-value=%.2f)' % (popLabel, M, s, mu, sigma, R, p) ) plt.semilogx(x, pdf, color=color, ls='dashed') return pdf fitmean = np.mean(data) fitstd = np.std(data) pdf = lognorm(fitmean, fitstd, binedges, n, label, colors[i]) pdfmax = max(pdfmax, max(pdf)) nmax = max(nmax, pdfmax) # check normality of distribution # W, p = scipy.stats.shapiro(data) # print 'Pop %s rate: mean = %f, std = %f, normality (Shapiro-Wilk test) = %f, p-value = %f' % (include[i], mu, sigma, W, p) plt.xlabel(xlabel, fontsize=fontsiz) plt.ylabel('Probability of occurrence' if density else 'Frequency', fontsize=fontsiz) xmax = binmax plt.xlim(histmin, xmax) plt.ylim(0, 1.1 * nmax if density else np.ceil(1.1 * nmax)) # min(n[n>=0]), max(n[n>=0])) plt.legend(fontsize=fontsiz) # if xlim: ax.set_xlim(xlim) # scatter elif graphType == 'scatter': from scipy import stats for i, (ynorms, data) in enumerate(zip(ynormsData, statData)): mean, binedges, _ = stats.binned_statistic(ynorms, data, 'mean', bins=bins) median, binedges, _ = stats.binned_statistic(ynorms, data, 'median', bins=bins) # p25 = lambda x: np.percentile(x, 25) # p75 = lambda x: np.percentile(x, 75) std, binedges, _ = stats.binned_statistic(ynorms, data, 'std', bins=bins) # per25, binedges, _ = stats.binned_statistic(ynorms, data, p25, bins=bins) # per75, binedges, _ = stats.binned_statistic(ynorms, data, p75, bins=bins) label = legendLabels[-i - 1] if legendLabels else str(include[-i - 1]) if kwargs.get('differentColor', None): threshold = kwargs['differentColor'][0] newColor = kwargs['differentColor'][1] # plt.scatter( ynorms[:threshold], data[:threshold], color=[6 / 255.0, 8 / 255.0, (64 + 30) / 255.0], label=label, s=2, ) # , [0/255.0,215/255.0,255/255.0], [88/255.0,204/255.0,20/255.0] plt.scatter( ynorms[threshold:], data[threshold:], color=newColor, alpha=0.2, s=2 ) # [88/255.0,204/255.0,20/255.0] else: plt.scatter( ynorms, data, color=[0 / 255.0, 215 / 255.0, 255 / 255.0], label=label, s=2 ) # [88/255.0,204/255.0,20/255.0] binstep = binedges[1] - binedges[0] bincenters = [b + binstep / 2 for b in binedges[:-1]] plt.errorbar( bincenters, mean, yerr=std, color=[6 / 255.0, 70 / 255.0, 163 / 255.0], fmt='o-', capthick=1, capsize=5, ) # [44/255.0,53/255.0,127/255.0] # plt.errorbar(bincenters, mean, yerr=[mean-per25,per75-mean], fmt='go-',capthick=1, capsize=5) ylims = plt.ylim() plt.ylim(0, ylims[1]) plt.xlabel('normalized y location (um)', fontsize=fontsiz) # plt.xlabel('avg rate (Hz)', fontsize=fontsiz) plt.ylabel(xlabel, fontsize=fontsiz) plt.legend(fontsize=fontsiz) try: plt.tight_layout() except: pass # save figure data if saveData: figData = { 'include': include, 'statData': statData, 'timeRange': timeRange, 'saveData': saveData, 'saveFig': saveFig, 'showFig': showFig, } _saveFigData(figData, saveData, 'spikeStats_' + stat) # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig + '_spikeStat_' + graphType + '_' + stat + '.png' else: filename = sim.cfg.filename + '_spikeStat_' + graphType + '_' + stat + '.png' plt.savefig(filename, dpi=dpi) # show fig if showFig: _showFigure() return fig, {'include': include, 'statData': statData, 'gidsData': gidsData, 'ynormsData': ynormsData}
# ------------------------------------------------------------------------------------------------------------------- ## Plot spiking power spectral density # ------------------------------------------------------------------------------------------------------------------- #
[docs] @exception def plotRatePSD( include=['eachPop', 'allCells'], timeRange=None, binSize=5, minFreq=1, maxFreq=100, transformMethod='morlet', stepFreq=1, NFFT=256, noverlap=128, smooth=0, norm=False, overlay=True, popColors={}, yLogScale = True, ylim=None, figSize=(10, 8), fontSize=12, lineWidth=1.5, saveData=None, saveFig=None, showFig=True, ): """ Function for/to <short description of `netpyne.analysis.spikes.plotRatePSD`> Parameters ---------- include : list Populations and cells to include in the plot. **Default:** ``['eachPop', 'allCells']`` plots histogram for each population and overall average **Options:** ``['all']`` plots all cells and stimulations, ``['allNetStims']`` plots just stimulations, ``['popName1']`` plots a single population, ``['popName1', 'popName2']`` plots multiple populations, ``[120]`` plots a single cell, ``[120, 130]`` plots multiple cells, ``[('popName1', 56)]`` plots a cell from a specific population, ``[('popName1', [0, 1]), ('popName2', [4, 5, 6])]``, plots cells from multiple populations timeRange : list [start, stop] Time range to plot. **Default:** ``None`` plots entire time range **Options:** ``<option>`` <description of option> binSize : int Size in ms of spike bins. **Default:** ``5`` **Options:** ``<option>`` <description of option> minFreq : float Minimum frequency to show in plot. **Default:** ``1`` **Options:** ``<option>`` <description of option> maxFreq : float Maximum frequency to show in plot. **Default:** ``100`` **Options:** ``<option>`` <description of option> transformMethod : str Sets the transform method. **Default:** ``'morlet'`` **Options:** ``'fft'`` stepFreq : float Step frequency for Morlet transform. **Default:** ``1`` **Options:** ``<option>`` <description of option> NFFT : int The number of data points used in each block for the FFT (power of 2) **Default:** ``256`` **Options:** ``<option>`` <description of option> noverlap : int Sets noverlap in FFT transform. **Default:** ``128`` **Options:** ``<option>`` <description of option> smooth : int Window size for smoothing; no smoothing if ``0``. **Default:** ``0`` **Options:** ``<option>`` <description of option> norm : bool Normalize power. **Default:** ``False`` **Options:** ``<option>`` <description of option> overlay : bool Whether to overlay plots or use subplots. **Default:** ``True`` overlays plots. **Options:** ``<option>`` <description of option> popColors : dict Dictionary with custom color (value) used for each population (key). **Default:** ``None`` uses standard colors **Options:** ``<option>`` <description of option> yLogScale : bool If True, power is expressed on a logarithmic scale (dB). **Default:** ``True`` **Options:** ``<option>`` <description of option> ylim : list [min, max] Sets the y limits of the plot. **Default:** ``None`` **Options:** ``<option>`` <description of option> figSize : list [width, height] Size of figure in inches. **Default:** ``(10, 8)`` **Options:** ``<option>`` <description of option> fontSize : int Font size on figure. **Default:** ``12`` **Options:** ``<option>`` <description of option> lineWidth : float Line width in the plot. **Default:** ``1.5`` **Options:** ``<option>`` <description of option> saveData : bool or str Whether and where to save the data used to generate the plot. **Default:** ``False`` **Options:** ``True`` autosaves the data, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.pkl'`` and ``'.json'`` saveFig : bool or str Whether and where to save the figure. **Default:** ``False`` **Options:** ``True`` autosaves the figure, ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.png'``, ``'.jpg'``, ``'.eps'``, and ``'.tiff'`` showFig : bool Shows the figure if ``True``. **Default:** ``True`` **Options:** ``<option>`` <description of option> Returns ------- """ from .. import sim print('Plotting firing rate power spectral density (PSD) ...') # Replace 'eachPop' with list of pops if 'eachPop' in include: include.remove('eachPop') for pop in sim.net.allPops: include.append(pop) # time range if timeRange is None: timeRange = [0, sim.cfg.duration] histData = [] # create fig fig, ax1 = plt.subplots(figsize=figSize) fontsiz = fontSize # set font size plt.rcParams.update({'font.size': fontSize}) allSignal, allFreqs = [], [] # Plot separate line for each entry in include for iplot, subset in enumerate(include): cells, cellGids, netStimLabels = getCellsInclude([subset]) numNetStims = 0 # Select cells to include if len(cellGids) > 0: try: spkinds, spkts = list( zip( *[ (spkgid, spkt) for spkgid, spkt in zip(sim.allSimData['spkid'], sim.allSimData['spkt']) if spkgid in cellGids ] ) ) except: spkinds, spkts = [], [] else: spkinds, spkts = [], [] # Add NetStim spikes spkts, spkinds = list(spkts), list(spkinds) numNetStims = 0 if 'stims' in sim.allSimData: for netStimLabel in netStimLabels: netStimSpks = [ spk for cell, stims in sim.allSimData['stims'].items() for stimLabel, stimSpks in stims.items() for spk in stimSpks if stimLabel == netStimLabel ] if len(netStimSpks) > 0: lastInd = max(spkinds) if len(spkinds) > 0 else 0 spktsNew = netStimSpks spkindsNew = [lastInd + 1 + i for i in range(len(netStimSpks))] spkts.extend(spktsNew) spkinds.extend(spkindsNew) numNetStims += 1 histo = np.histogram(spkts, bins=np.arange(timeRange[0], timeRange[1], binSize)) histoT = histo[1][:-1] + binSize / 2 histoCount = histo[0] histoCount = histoCount * (1000.0 / binSize) / (len(cellGids) + numNetStims) # convert to rates histData.append(histoCount) # Morlet wavelet transform method if transformMethod == 'morlet': from ..support.morlet import MorletSpec, index2ms Fs = 1000.0 / binSize morletSpec = MorletSpec(histoCount, Fs, freqmin=minFreq, freqmax=maxFreq, freqstep=stepFreq) freqs = morletSpec.f spec = morletSpec.TFR signal = np.mean(spec, 1) ylabel = 'Power' # FFT transform method elif transformMethod == 'fft': Fs = 1000.0 / binSize # ACTUALLY DEPENDS ON BIN WINDOW!!! RATE NOT SPIKE! power, freqs = mlab.psd( histoCount, Fs=Fs, NFFT=NFFT, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=noverlap, pad_to=None, sides='default', scale_by_freq=True, ) if yLogScale: signal = 10 * np.log10(power) else: signal = power if smooth: signal = _smooth1d(signal, smooth) # dB vs watt if yLogScale: ylabel = 'Power (dB/Hz)' else: ylabel = 'Power (a. u.)' allFreqs.append(freqs) allSignal.append(signal) if norm: vmax = np.max(allSignal) for i, s in enumerate(allSignal): allSignal[i] = allSignal[i] / vmax for iplot, (subset, freqs, signal) in enumerate(zip(include, allFreqs, allSignal)): color = ( popColors[subset] if isinstance(subset, (str, tuple)) and subset in popColors else colorList[iplot % len(colorList)] ) if not overlay: plt.subplot(len(include), 1, iplot + 1) # if subplot, create new subplot plt.title(str(subset), fontsize=fontsiz) color = 'blue' plt.plot(freqs[(freqs < maxFreq) & (freqs > minFreq)], signal[(freqs < maxFreq) & (freqs > minFreq)], linewidth=lineWidth, color=color) plt.xlabel('Frequency (Hz)', fontsize=fontsiz) plt.ylabel(ylabel, fontsize=fontsiz) # add yaxis in opposite side plt.xlim([0, maxFreq]) if ylim: plt.ylim(ylim) # if len(include) < 5: # if apply tight_layout with many subplots it inverts the y-axis # try: # plt.tight_layout() # except: # pass # Add legend if overlay: for i, subset in enumerate(include): color = ( popColors[subset] if isinstance(subset, basestring) and subset in popColors else colorList[i % len(colorList)] ) plt.plot(0, 0, color=color, label=str(subset), linewidth=lineWidth) plt.legend(fontsize=fontsiz, loc=1) # , bbox_to_anchor=(1.04, 1), loc=2, borderaxespad=0.) maxLabelLen = min(10, max([len(str(l)) for l in include])) # plt.subplots_adjust(right=(0.9-0.012*maxLabelLen)) # save figure data if saveData: figData = { 'histData': histData, 'histT': histoT, 'include': include, 'timeRange': timeRange, 'binSize': binSize, 'saveData': saveData, 'saveFig': saveFig, 'showFig': showFig, } _saveFigData(figData, saveData, 'spikePSD') # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_plot_spikePSD.png' plt.savefig(filename) # show fig if showFig: _showFigure() return fig, {'allSignal': allSignal, 'allFreqs': allFreqs}
# ------------------------------------------------------------------------------------------------------------------- ## Plot spiking spectrogram # -------------------------------------------------------------------------------------------------------------------
[docs] @exception def plotRateSpectrogram( include=['allCells', 'eachPop'], timeRange=None, binSize=5, minFreq=1, maxFreq=100, stepFreq=1, NFFT=256, noverlap=128, smooth=0, overlay=True, ylim=None, transformMethod='morlet', norm=False, popColors={}, lineWidth=1.5, fontSize=12, figSize=(10, 8), saveData=None, saveFig=None, showFig=True, ): """ Function for/to <short description of `netpyne.analysis.spikes.plotRateSpectrogram`> Parameters ---------- include : list <Short description of include> **Default:** ``['allCells', 'eachPop']`` **Options:** ``<option>`` <description of option> timeRange : <``None``?> <Short description of timeRange> **Default:** ``None`` **Options:** ``<option>`` <description of option> binSize : int <Short description of binSize> **Default:** ``5`` **Options:** ``<option>`` <description of option> minFreq : int <Short description of minFreq> **Default:** ``1`` **Options:** ``<option>`` <description of option> maxFreq : int <Short description of maxFreq> **Default:** ``100`` **Options:** ``<option>`` <description of option> stepFreq : int <Short description of stepFreq> **Default:** ``1`` **Options:** ``<option>`` <description of option> NFFT : int <Short description of NFFT> **Default:** ``256`` **Options:** ``<option>`` <description of option> noverlap : int <Short description of noverlap> **Default:** ``128`` **Options:** ``<option>`` <description of option> smooth : int <Short description of smooth> **Default:** ``0`` **Options:** ``<option>`` <description of option> overlay : bool <Short description of overlay> **Default:** ``True`` **Options:** ``<option>`` <description of option> ylim : <``None``?> <Short description of ylim> **Default:** ``None`` **Options:** ``<option>`` <description of option> transformMethod : str <Short description of transformMethod> **Default:** ``'morlet'`` **Options:** ``<option>`` <description of option> norm : bool <Short description of norm> **Default:** ``False`` **Options:** ``<option>`` <description of option> popColors : dict <Short description of popColors> **Default:** ``{}`` **Options:** ``<option>`` <description of option> lineWidth : float <Short description of lineWidth> **Default:** ``1.5`` **Options:** ``<option>`` <description of option> fontSize : int <Short description of fontSize> **Default:** ``12`` **Options:** ``<option>`` <description of option> figSize : tuple <Short description of figSize> **Default:** ``(10, 8)`` **Options:** ``<option>`` <description of option> saveData : <``None``?> <Short description of saveData> **Default:** ``None`` **Options:** ``<option>`` <description of option> saveFig : <``None``?> <Short description of saveFig> **Default:** ``None`` **Options:** ``<option>`` <description of option> showFig : bool <Short description of showFig> **Default:** ``True`` **Options:** ``<option>`` <description of option> """ from .. import sim print('Plotting firing rate spectrogram ...') # Replace 'eachPop' with list of pops if 'eachPop' in include: include.remove('eachPop') for pop in sim.net.allPops: include.append(pop) # time range if timeRange is None: timeRange = [0, sim.cfg.duration] histData = [] # create fig fig, ax1 = plt.subplots(figsize=figSize) fontsiz = fontSize # set font size plt.rcParams.update({'font.size': fontSize}) allSignal, allFreqs = [], [] # Plot separate line for each entry in include for iplot, subset in enumerate(include): cells, cellGids, netStimLabels = getCellsInclude([subset]) numNetStims = 0 # Select cells to include if len(cellGids) > 0: try: spkinds, spkts = list( zip( *[ (spkgid, spkt) for spkgid, spkt in zip(sim.allSimData['spkid'], sim.allSimData['spkt']) if spkgid in cellGids ] ) ) except: spkinds, spkts = [], [] else: spkinds, spkts = [], [] # Add NetStim spikes spkts, spkinds = list(spkts), list(spkinds) numNetStims = 0 if 'stims' in sim.allSimData: for netStimLabel in netStimLabels: netStimSpks = [ spk for cell, stims in sim.allSimData['stims'].items() for stimLabel, stimSpks in stims.items() for spk in stimSpks if stimLabel == netStimLabel ] if len(netStimSpks) > 0: lastInd = max(spkinds) if len(spkinds) > 0 else 0 spktsNew = netStimSpks spkindsNew = [lastInd + 1 + i for i in range(len(netStimSpks))] spkts.extend(spktsNew) spkinds.extend(spkindsNew) numNetStims += 1 histo = np.histogram(spkts, bins=np.arange(timeRange[0], timeRange[1], binSize)) histoT = histo[1][:-1] + binSize / 2 histoCount = histo[0] histoCount = histoCount * (1000.0 / binSize) / (len(cellGids) + numNetStims) # convert to rates histData.append(histoCount) # Morlet wavelet transform method if transformMethod == 'morlet': from ..support.morlet import MorletSpec, index2ms Fs = 1000.0 / binSize morletSpec = MorletSpec(histoCount, Fs, freqmin=minFreq, freqmax=maxFreq, freqstep=stepFreq) freqs = morletSpec.f spec = morletSpec.TFR ylabel = 'Power' allSignal.append(spec) allFreqs.append(freqs) # plotting T = timeRange for iplot, (subset, freqs, signal) in enumerate(zip(include, allFreqs, allSignal)): plt.subplot(len(include), 1, iplot + 1) # if subplot, create new subplot plt.title(str(subset), fontsize=fontsiz) plt.imshow( signal, extent=(np.amin(T), np.amax(T), np.amin(freqs), np.amax(freqs)), origin='lower', interpolation='None', aspect='auto', cmap=plt.get_cmap('viridis'), ) plt.colorbar(label='Power') plt.ylabel('Time (ms)') plt.ylabel('Hz') plt.tight_layout() # save figure data if saveData: figData = { 'histData': histData, 'histT': histoT, 'include': include, 'timeRange': timeRange, 'binSize': binSize, 'saveData': saveData, 'saveFig': saveFig, 'showFig': showFig, } _saveFigData(figData, saveData, 'spikeHist') # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'spikeSpectrogram.png' plt.savefig(filename) # show fig if showFig: _showFigure() return fig, {'allSignal': allSignal, 'allFreqs': allFreqs}
# ------------------------------------------------------------------------------ # Calculate and print avg pop rates # ------------------------------------------------------------------------------
[docs] @exception def popAvgRates(tranges=None, show=True): """ Function for/to <short description of `netpyne.analysis.spikes.popAvgRates`> Parameters ---------- tranges : <``None``?> <Short description of tranges> **Default:** ``None`` **Options:** ``<option>`` <description of option> show : bool <Short description of show> **Default:** ``True`` **Options:** ``<option>`` <description of option> """ from .. import sim avgRates = Dict() if not hasattr(sim, 'allSimData') or 'spkt' not in sim.allSimData: print('Error: sim.allSimData not available; please call sim.gatherData()') return None spktsAll = sim.allSimData['spkt'] spkidsAll = sim.allSimData['spkid'] spkidsList, spktsList = [], [] if not isinstance(tranges, list): # True or None tranges = [[0, sim.cfg.duration]] if isinstance(tranges, list): # convert single time interval to list if not isinstance(tranges[0], (list, tuple)): tranges = [tranges] # calculate for multiple time intervals if isinstance(tranges[0], (list, tuple)): for trange in tranges: try: spkids, spkts = list( zip( *[ (spkid, spkt) for spkid, spkt in zip(spkidsAll, spktsAll) if trange[0] <= spkt <= trange[1] ] ) ) except: spkids, spkts = [], [] spkidsList.append(spkids) spktsList.append(spkts) else: return avgRates for pop in sim.net.allPops: if len(tranges) > 1: print(' %s ' % (pop)) avgRates[pop] = {} for spkids, spkts, trange in zip(spkidsList, spktsList, tranges): numCells = float(len(sim.net.allPops[pop]['cellGids'])) if numCells > 0: # single time intervals if len(tranges) == 1: tsecs = float((trange[1] - trange[0])) / 1000.0 avgRates[pop] = ( len([spkid for spkid in spkids if sim.net.allCells[int(spkid)]['tags']['pop'] == pop]) / numCells / tsecs ) print(' %s : %.3f Hz' % (pop, avgRates[pop])) # multiple time intervals else: tsecs = float((trange[1] - trange[0])) / 1000.0 avgRates[pop]['%d_%d' % (trange[0], trange[1])] = ( len([spkid for spkid in spkids if sim.net.allCells[int(spkid)]['tags']['pop'] == pop]) / numCells / tsecs ) print( ' (%d - %d ms): %.3f Hz' % (trange[0], trange[1], avgRates[pop]['%d_%d' % (trange[0], trange[1])]) ) return avgRates
# ------------------------------------------------------------------------------ # Calculate f-I curve and analyze features # ------------------------------------------------------------------------------
[docs] @exception def calculatefI(): from .. import sim print('Calculating f-I features...') times = sim.cfg.analysis['plotfI'].get('times', [0, sim.cfg.duration]) dur = sim.cfg.analysis['plotfI'].get('dur', sim.cfg.duration) onset = sim.cfg.analysis['plotfI'].get('calculateOnset', False) durSteady = sim.cfg.analysis['plotfI'].get('durSteady', None) sim.allSimData['fI'] = [ len([spkt for spkt in sim.allSimData['spkt'] if t <= spkt < t + dur]) / (dur / 1000.0) for t in times ] if onset: # rate based on inter-spike interval of 1st 2 spikes sim.allSimData['fI_onset'] = [] for t in times: allSpks = [spkt for spkt in sim.allSimData['spkt'] if t <= spkt < t + dur] if len(allSpks) >= 2: sim.allSimData['fI_onset'].append(1000.0 / (allSpks[1] - allSpks[0])) else: sim.allSimData['fI_onset'].append(0.0) if durSteady: # rate based on the last 'dur' ms sim.allSimData['fI_steady'] = [ len([spkt for spkt in sim.allSimData['spkt'] if t + dur - durSteady <= spkt < t + dur]) / (durSteady / 1000.0) for t in times ] # calculate features of fI curve calculateFeatures = sim.cfg.analysis['plotfI']['calculateFeatures'] threshold = sim.net.params.defaultThreshold v = sim.allSimData['V_soma']['cell_0'] dt = sim.cfg.recordStep minDistance = 10 # number of samples required between spike peaks RMP = v[int(times[0] - 1.0 / dt)] # right before 1st current injection from scipy.signal import find_peaks peakTimes = [] peakHeights = [] for time in times: ptimes, properties = find_peaks( v[int(time / dt) : int((time + dur) / dt)], height=threshold, distance=minDistance ) peakTimes.append(ptimes) peakHeights.append(properties['peak_heights']) # calculate latency to 1st spike peak (ms) if 'latencyPeak1' in calculateFeatures: sim.allSimData['fI_latencyPeak1'] = [] for i in range(len(times)): value = peakTimes[i][0] * dt if len(peakTimes[i]) > 0 else -1 sim.allSimData['fI_latencyPeak1'].append(value) # calculate interspike to 1st spike peak (ms) if 'ISIPeak1' in calculateFeatures: sim.allSimData['fI_ISIPeak1'] = [] for i in range(len(times)): value = (peakTimes[i][1] - peakTimes[i][0]) * dt if len(peakTimes[i]) > 1 else -1 sim.allSimData['fI_ISIPeak1'].append(value) # calculate 1st spike amplitude (mV) if 'ampSpike1' in calculateFeatures: sim.allSimData['fI_ampSpike1'] = [] for i in range(len(times)): value = peakHeights[i][0] - RMP if len(peakTimes[i]) > 0 else threshold - 1 sim.allSimData['fI_ampSpike1'].append(value) # calculate 2nd spike amplitude (mV) if 'ampSpike2' in calculateFeatures: sim.allSimData['fI_ampSpike2'] = [] for i in range(len(times)): value = peakHeights[i][1] - RMP if len(peakTimes[i]) > 1 else threshold - 1 sim.allSimData['fI_ampSpike2'].append(value)
# ------------------------------------------------------------------------------ # Calculate and plot f-I curve # ------------------------------------------------------------------------------
[docs] @exception def plotfI( amps, times, dur, target={}, calculateOnset=False, targetRatesOnset=[], durSteady=None, targetRatesSteady=[], calculateFeatures=[], saveFig=None, showFig=True, ): """ Function to plot frequency-current (fI) relationship Parameters ---------- amps : <type> <Short description of amps> **Default:** *required* times : <type> <Short description of times> **Default:** *required* dur : <type> <Short description of dur> **Default:** *required* targetRates : list <Short description of targetRates> **Default:** ``[]`` **Options:** ``<option>`` <description of option> calculateOnset : bool <Short description of calculateOnset> **Default:** ``False`` **Options:** ``<option>`` <description of option> targetRatesOnset : list <Short description of targetRatesOnset> **Default:** ``[]`` **Options:** ``<option>`` <description of option> durSteady : <``None``?> <Short description of durSteady> **Default:** ``None`` **Options:** ``<option>`` <description of option> targetRatesSteady : list <Short description of targetRatesSteady> **Default:** ``[]`` **Options:** ``<option>`` <description of option> saveFig : <``None``?> <Short description of saveFig> **Default:** ``None`` **Options:** ``<option>`` <description of option> showFig : bool <Short description of showFig> **Default:** ``True`` **Options:** ``<option>`` <description of option> Returns ------- (fig, dict) A tuple consisting of the Matplotlib figure handle and a dictionary containing the plot data See Also -------- calculatefI : """ from .. import sim outData = {} # rates fig = plt.figure(figsize=(10, 6)) if not 'fI_steady' in sim.allSimData: fI = sim.allSimData['fI'] plt.plot(amps, fI, label='Model', linewidth=2, marker='o') if 'rates' in target: plt.plot(amps, target['rates'], label='Experiment', linestyle='dotted', marker='o') plt.xlabel('Current amplitude (nA)') plt.ylabel('Rate (Hz)') plt.legend() outData['fI'] = fI if 'fI_onset' in sim.allSimData: fI_onset = sim.allSimData['fI_onset'] plt.plot(amps, fI_onset, label='Model (onset)', linewidth=2, marker='o') if 'ratesOnset' in target: plt.plot(amps, target['ratesOnset'], label='Experiment (onset)', linestyle='dotted', marker='o') plt.xlabel('Current amplitude (nA)') plt.ylabel('Rate (Hz)') plt.legend() outData['fI_onset'] = fI_onset if 'fI_steady' in sim.allSimData: fI_steady = sim.allSimData['fI_steady'] plt.plot(amps, fI_steady, label='Model (steady)', linewidth=2, marker='o') if 'ratesSteady' in target: plt.plot(amps, target['ratesSteady'], label='Experiment (steady)', linestyle='dotted', marker='o') plt.xlabel('Current amplitude (nA)') plt.ylabel('Rate (Hz)') plt.legend() outData['fI_steady'] = fI_steady plt.title('f-I curve') # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'fI.png' plt.savefig(filename) # latencyPeak1 if 'fI_latencyPeak1' in sim.allSimData: fig = plt.figure(figsize=(10, 6)) fI_latencyPeak1 = sim.allSimData['fI_latencyPeak1'] plt.plot(amps, fI_latencyPeak1, label='Model', linewidth=2, marker='o') if 'latencyPeak1' in target: plt.plot(amps, target['latencyPeak1'], label='Experiment', linestyle='dotted', marker='o') plt.ylabel('ms') plt.xlabel('Current amplitude (nA)') plt.title('latencyPeak1') plt.legend() outData['fI_latencyPeak1'] = fI_latencyPeak1 # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'fI_latencyPeak1.png' plt.savefig(filename) # ISIPeak1 if 'fI_ISIPeak1' in sim.allSimData: fig = plt.figure(figsize=(10, 6)) fI_ISIPeak1 = sim.allSimData['fI_ISIPeak1'] plt.plot(amps, fI_ISIPeak1, label='Model', linewidth=2, marker='o') if 'ISIPeak1' in target: plt.plot(amps, target['ISIPeak1'], label='Experiment', linestyle='dotted', marker='o') plt.ylabel('ms') plt.xlabel('Current amplitude (nA)') plt.title('ISIPeak1') plt.legend() outData['fI_ISIPeak1'] = fI_ISIPeak1 # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'fI_ISIPeak1.png' plt.savefig(filename) # ampSpike1 if 'fI_ampSpike1' in sim.allSimData: fig = plt.figure(figsize=(10, 6)) fI_ampSpike1 = sim.allSimData['fI_ampSpike1'] plt.plot(amps, fI_ampSpike1, label='Model', linewidth=2, marker='o') if 'ampSpike1' in target: plt.plot(amps, target['ampSpike1'], label='Experiment', linestyle='dotted', marker='o') plt.ylabel('mV') plt.xlabel('Current amplitude (nA)') plt.title('ampSpike1') plt.legend() outData['fI_ampSpike1'] = fI_ampSpike1 # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'fI_ampSpike1.png' plt.savefig(filename) # ampSpike2 if 'fI_ampSpike2' in sim.allSimData: fig = plt.figure(figsize=(10, 6)) fI_ampSpike2 = sim.allSimData['fI_ampSpike2'] plt.plot(amps, fI_ampSpike2, label='Model', linewidth=2, marker='o') if 'ampSpike2' in target: plt.plot(amps, target['ampSpike2'], label='Experiment', linestyle='dotted', marker='o') plt.ylabel('mV') plt.xlabel('Current amplitude (nA)') plt.title('ampSpike2') plt.legend() outData['fI_ampSpike2'] = fI_ampSpike2 # save figure if saveFig: if isinstance(saveFig, basestring): filename = saveFig else: filename = sim.cfg.filename + '_' + 'fI_ampSpike2.png' plt.savefig(filename) # show fig if showFig: _showFigure() return fig, outData