netpyne.conversion.sonataImport module
Module with functions to import from and export to SONATA format
-
netpyne.conversion.sonataImport.load_csv_props(info_file)[source]
Load a generic csv file as used in Sonata
-
netpyne.conversion.sonataImport.ascii_encode_dict(data)[source]
-
netpyne.conversion.sonataImport.load_json(filename)[source]
-
class netpyne.conversion.sonataImport.EmptyCell[source]
Bases: object
-
netpyne.conversion.sonataImport.fix_axon_peri(hobj)[source]
Replace reconstructed axon with a stub
:param hobj: hoc object
-
netpyne.conversion.sonataImport.fix_axon_peri_v2(hobj)[source]
Replace reconstructed axon with a stub (keep order); BBP version
:param hobj: hoc object
-
netpyne.conversion.sonataImport.fix_sec_nseg(secs, dL)[source]
Set nseg of sections based on dL param: section.nseg = 1 + 2 * int(section.L / (2*dL))
:param secs: netpyne dictionary with all sections
:param dL: dL from config file
-
netpyne.conversion.sonataImport.swap_soma_xy(secs)[source]
Swap soma x and y coords so cylinder is vertical instead of horizontal
-
class netpyne.conversion.sonataImport.SONATAImporter(**parameters)[source]
Bases: object
-
importNet(configFile, replaceAxon=True, setdLNseg=True, swapSomaXY=True)[source]
-
createSimulationConfig()[source]
-
createPops()[source]
-
createCells()[source]
-
createConns()[source]
SONATA method - works but same results as NeuroMLlite
-
createNetStims()[source]
-
createIClamps()[source]
-
setCellRuleDynamicParamsFromNeuroml(nml_params, cellRule)[source]
-
setCellRuleDynamicParamsFromNeuroml_old(cell, cellRule)[source]
-
setCellRuleDynamicParamsFromJson(cell_dynamic_params, cellRule)[source]
-
parse_group(g)[source]
-
parse_dataset(d)[source]
-
subs(path)[source]
Search the strings in a config file for a substitutable value, e.g.
“morphologies_dir”: “$COMPONENT_DIR/morphologies”,