netpyne.conversion.neuromlFormat
Module for importing and exporting NeuroML 2
Functions:
|
Short description of netpyne.conversion.neuromlFormat.H |
|
Exports the current NetPyNE network to NeuroML format |
|
Import network from NeuroML2 and convert internally to NetPyNE format |
Classes:
|
Works with libNeuroML's NeuroMLXMLParser and/or NeuroMLHdf5Parser to parse the NML & build equivalent in NetPyNE |
- netpyne.conversion.neuromlFormat.H(x)[source]
Short description of netpyne.conversion.neuromlFormat.H
- Parameters:
x –
Short description of x
Default:
RequiredOptions:
- netpyne.conversion.neuromlFormat.exportNeuroML2(reference, connections=True, stimulations=True, format='xml', default_cell_radius=5)[source]
Exports the current NetPyNE network to NeuroML format
- Parameters:
reference (str) – Will be used for id of the network
connections (bool) – Should connections also be exported? Default:
Truestimulations (bool) – Should stimulations (current clamps etc) also be exported? Default:
Trueformat (str) – Which format, xml or hdf5 Default:
'xml'Options:'xml'Export as XML format'hdf5'Export as binary HDF5 format
- default_cell_radiusint
For abstract cells, e.g. izhikevich, what value should be used in the optional radius property of a population, which can be used in 3D visualizations, etc. Default:
5
- class netpyne.conversion.neuromlFormat.NetPyNEBuilder(netParams, simConfig=None, verbose=False)[source]
Bases:
DefaultNetworkHandlerWorks with libNeuroML’s NeuroMLXMLParser and/or NeuroMLHdf5Parser to parse the NML & build equivalent in NetPyNE
Attributes:
Methods:
finalise()handle_network(network_id, notes[, temperature])handle_population(population_id, component, ...)handle_location(id, population_id, ...)handle_projection(projName, prePop, postPop, ...)handle_connection(projName, id, prePop, ...)handle_input_list(inputListId, ...[, ...])handle_single_input(inputListId, id, cellId)- cellParams = {}
- popParams = {}
- pop_ids_vs_seg_ids_vs_segs = {}
- pop_ids_vs_components = {}
- pop_ids_vs_use_segment_groups_for_neuron = {}
- pop_ids_vs_ordered_segs = {}
- pop_ids_vs_cumulative_lengths = {}
- projection_infos = {}
- connections = {}
- popStimSources = {}
- stimSources = {}
- popStimLists = {}
- stimLists = {}
- gids = {}
- next_gid = 0
- stochastic_input_count = 0
- handle_projection(projName, prePop, postPop, synapse, hasWeights=False, hasDelays=False, type='projection', synapse_obj=None, pre_synapse_obj=None)[source]
- netpyne.conversion.neuromlFormat.importNeuroML2(fileName, simConfig, simulate=True, analyze=True, return_net_params_also=False)[source]
Import network from NeuroML2 and convert internally to NetPyNE format
- Parameters:
fileName (str) – The filename of the NeuroML file Default:
RequiredsimConfig (
simConfig object) – NetPyNE simConfig object specifying simulation configuration. Default:Requiredsimulate (bool) – Go ahead and run a simulation of it already Default:
Trueanalyze (bool) – Run sim.saveData() and sim.analysis.plotData() Default:
True